The Crystal and Molecular Structure of 2-(2,6-Dimethylphenyl)imino-3-(2-methylbenzoyl)thiazolidine

By Gyula Argay and Alajos Kálmán
Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1525-Budapest, POB 17, Hungary
and Ágnes Nahlovski and Béla Ribár
Faculty of Sciences, University of Novi Sad, Ilije Djuričica 4, 21000 Novi Sad, Yugoslavia

(Received 3 March 1975; accepted 7 March 1975)
2-(2,6-Dimethylphenyl)imino-3-(2-methylbenzoyl)thiazolidine, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$, is monoclinic, space group $P 2_{1} / n$, with $a=9.430, b=13.731, c=14.439 \AA, \beta=105.06^{\circ}, Z=4$. The structure was refined by leastsquares calculations to $R=0.044$. The structure (including the conformation) is similar to that of 2-(2,6-dimethylphenyl)imino-3-(2-chlorobenzoyl)thiazolidine. The arylimino group is linked to the thiazolidine ring by a strong localized $\mathrm{C}=\mathrm{N}$ double bond of $1 \cdot 250 \AA$; thus the $\mathrm{N}-\mathrm{C}_{\varphi}$ bond ($1 \cdot 430 \AA$) has only weak π-bond character. Both $\mathrm{C}\left(s p^{3}\right)-\mathrm{S}^{11}$ and $\mathrm{C}\left(s p^{2}\right)-\mathrm{S}^{11}$ bond lengths (1.796 and $1.772 \AA$) indicate single bonds and agree well with expected values.

Introduction

Argay, Kálmán, Tóth \& Toldy (1972) described the structure of 2-(2,6-dimethylphenyl)imino-3-(2-chlorobenzoyl)thiazolidine (ATOCL) and showed that acylation of the 2-arylamino*-2-thiazolines (and the analogous thiazines) with an ortho-substituted benzoyl group, in agreement with spectroscopic evidence, takes place only on the endocyclic N atom forming isomers of the type (I).

(I)

(II)

However, when $\mathrm{X}=\mathrm{H}$ isomers of the type (II) are formed.

The refinement of the structure of ATOCL terminated at an R of 0.095 (Argay \& Kálmán, 1975). Thus the bond lengths (especially S-C) and angles were of limited accuracy. In order to obtain more accurate atomic parameters for the five-membered ring and its environment, and to give further proof of the predominant formation of isomer (I) in these reactions, the structure of the title compound ($\mathrm{X}=\mathrm{Me}$, hereinafter: ATOME) has been determined.

Experimental

Infrared and melting-point data showed that the product crystallized pure from ethyl alcohol. The lattice parameters were determined from oscillation and We-

* The aryl groups in these reactions are given by Tóth \& Toldy (1972).
issenberg photographs and refined by single-crystal diffractometry. The density was measured by flotation.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, M=324 \cdot 45$. Monoclinic; $a=9 \cdot 430(3)$, $b=13 \cdot 731(4), c=14 \cdot 439(5) \AA ; \beta=105 \cdot 06^{\circ} ; V=1805 \cdot 48$ $\AA^{3}, Z=4, D_{x}=1 \cdot 193, D_{m}=1 \cdot 18 \mathrm{gcm}^{-3} . F(000)=688$; space group $P 2_{1} / n($ No. 14$) ; \mu($ Mo $K \bar{\alpha}, \lambda=0.7107 \AA)=$ $1.85 \mathrm{~cm}^{-1}$.

Intensities of 1154 independent reflexions were collected on a Syntex $P \overline{1}$ computer-controlled fourcircle diffractometer with Mo $K \bar{\alpha}$ radiation from a graphite monochromator. The data were corrected for Lorentz and polarization effects, but not for absorption. After data reduction 248 reflexions with $\left|F_{o}\right|-5 \sigma(F)<0$ were taken as unobserved.

Structure determination and refinement

The coordinates of the S atom were obtained by the Patterson method. Five successive cycles of structurefactor and Fourier calculations with the 250 strongest reflexions gave the positions of all non-hydrogen atoms. At this stage $R=\Sigma| | F_{o}\left|-\left|F_{c}\right| / / \Sigma\right| F_{o} \mid$ was $0 \cdot 34$ for the observed reflexions.

The structure was refined by block-diagonal leastsquares calculations (Albano, Domenicano \& Vaciago, 1966). The function minimized was

$$
\sum w\left(\left|F_{o}\right|-1 / G\left|F_{c}\right|\right)^{2}
$$

where G is the scaling factor and w the weight (Cruickshank, Pilling, Bujosa, Lovell \& Truter, 1961), $w=(6 \cdot 0$ $\left.+1 \cdot 0 F_{o}+0.06 F_{o}^{2}\right)^{-1}$. Six cycles of isotropic refinement reduced R to $0 \cdot 140$. In order to increase the ratio between the number of reflexions and the atomic parameters refined in an anisotropic cycle, the atoms were arranged in three overlapping groups with nine atoms in each. Two cycles of refinement with anisotropic thermal parameters for each group reduced R
to 0.080 . At this stage 17 of the 20 H atoms were located from a difference map. Their contributions improved R to 0.069 . The three missing H atoms [belonging to $\mathrm{C}(19)$] were located from a difference map computed after another cycle of anisotropic refinement for each group. Two further cycles of anisotropic refinement of the heavy atoms with the H atoms treated isotropically gave a final R of 0.044 for the observed and 0.068 for all reflexions.*

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30983 (5 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Fig. 1. Atomic numbering of the title compound. The bare numbers are for carbon atoms. Rings are labelled A, B and

Scattering factors were taken from International Tables for X-ray Crystallography (1962). All calculations were carried out on a Varian 73 computer at Novi Sad. The final coordinates and thermal parameters for the non-hydrogen atoms are given in Table 1, the parameters of the H atoms and the $\mathrm{C}-\mathrm{H}$ distances in Table 2, the bond distances and angles in Table 3, and the atomic numbering in Fig. 1. A description of the structure of ATOCL appears in this issue (Argay \& Kálmán, 1975).

Table 2. Fractional coordinates ($\times 10^{3}$), isotropic temperature parameters $\left(\AA^{2}\right)$ and bond distances (\AA) for the hydrogen atoms
Estimated standard deviations are given in parentheses.

	x / a	y / b	z / c	$B_{i}\left(\AA^{2}\right)$	C-H (\AA)
H(1,1)	457 (6)	354 (4)	872 (4)	$3 \cdot 7$ (15)	1.03 (6)
H(1,2)	375 (6)	451 (4)	820 (4)	$3 \cdot 0$ (16)	0.99 (6)
$\mathrm{H}(2,1)$	233 (6)	293 (5)	799 (4)	$5 \cdot 2$ (17)	0.95 (6)
H(2,2)	215 (7)	369 (5)	705 (5)	$5 \cdot 3$ (19)	1.05 (7)
H(6)	945 (8)	250 (6)	583 (5)	$6 \cdot 9$ (23)	0.83 (8)
H(7)	902 (10)	362 (7)	465 (7)	$10 \cdot 5$ (30)	0.91 (10)
H(8)	652 (9)	418 (7)	402 (6)	$8 \cdot 8$ (26)	0.93 (9)
$\mathrm{H}(10,1)$	726 (7)	119 (5)	672 (5)	$6 \cdot 6$ (21)	1.04 (7)
$\mathrm{H}(10,2)$	792 (8)	198 (6)	752 (6)	$9 \cdot 4$ (24)	1.04 (8)
H(10,3)	875 (7)	143 (5)	695 (5)	$6 \cdot 3$ (20)	$0 \cdot 86$ (7)
$\mathrm{H}(11,1)$	379 (8)	416 (6)	501 (5)	$6 \cdot 5$ (22)	1.05 (8)
H(11,2)	344 (8)	330 (6)	427 (6)	$7 \cdot 7$ (22)	0.92 (8)
H(11,3)	399 (10)	423 (7)	406 (6)	$10 \cdot 8$ (30)	$0 \cdot 96$ (9)
H(14)	517 (7)	80 (5)	815 (5)	6.7 (18)	0.97 (7)
$\mathrm{H}(15)$	665 (7)	-60 (5)	810 (5)	6.9 (19)	1.04 (7)
H(16)	605 (6)	-151 (4)	671 (4)	$4 \cdot 9$ (15)	0.99 (6)
H(17)	411 (6)	-92 (4)	535 (4)	$4 \cdot 4$ (16)	$0 \cdot 85$ (6)
H(19,1)	123 (8)	47 (6)	523 (5)	$8 \cdot 3$ (23)	1.01 (8)
H(19,2)	201 (10)	17 (7)	464 (7)	11.4 (32)	0.81 (10)
$\mathrm{H}(19,3)$	227 (9)	114 (6)	487 (6)	$10 \cdot 9$ (27)	0.96 (8)

Table 1. Fractional coordinates and anisotropic thermal parameters ($\times 10^{4}$)
Estimated standard deviations are given in parentheses. The anisotropic thermal parameters are given in the form:

	x / a	y / b	z / c	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
S	5304 (2)	3880 (1)	7279 (1)	195 (2)	58 (1)	84 (1)	-39 (3)	101 (2)	-46 (2)
O	1653 (4)	1386 (3)	7085 (4)	139 (5)	84 (3)	143 (3)	-20(7)	149 (6)	-32 (6)
$\mathrm{N}(1)$	3474 (5)	2441 (3)	7106 (4)	128 (6)	48 (3)	91 (3)	30 (7)	93 (7)	-11 (5)
$\mathrm{N}(2)$	4978 (5)	2356 (3)	6052 (3)	144 (6)	49 (3)	64 (3)	-4 (8)	74 (7)	-6 (5)
C(1)	4103 (8)	3856 (5)	8061 (5)	248 (10)	59 (4)	98 (4)	15 (11)	146 (10)	-62 (7)
C(2)	2809 (7)	3214 (5)	7548 (5)	222 (10)	62 (4)	100 (4)	63 (11)	141 (10)	-26(7)
C(3)	4604 (6)	2766 (4)	6725 (4)	129 (7)	36 (3)	50 (3)	14 (8)	58 (7)	6 (5)
C(4)	6124 (7)	2744 (4)	5680 (4)	205 (9)	38 (3)	54 (3)	-20 (10)	88 (9)	-31(6)
C(5)	7547 (7)	2415 (5)	6041 (5)	168 (9)	58 (4)	64 (4)	-16 (11)	85 (9)	-19 (7)
C(6)	8614 (8)	2742 (6)	5596 (5)	212 (10)	93 (6)	107 (5)	-29 (13)	169 (11)	-28 (9)
C(7)	8260 (9)	3392 (6)	4866 (6)	330 (13)	96 (6)	119 (5)	-98(16)	245 (11)	-30 (10)
C(8)	6845 (10)	3729 (6)	4509 (6)	401 (16)	73 (5)	85 (5)	-38(16)	191 (13)	4 (8)
C(9)	5732 (8)	3406 (5)	4921 (5)	265 (11)	52 (4)	63 (4)	15 (12)	126 (10)	-7 (7)
$\mathrm{C}(10)$	7908 (8)	1706 (5)	6847 (5)	173 (10)	88 (5)	70 (4)	14 (13)	60 (10)	15 (8)
C(11)	4192 (10)	3730 (6)	4537 (6)	316 (16)	80 (5)	82 (5)	92 (16)	26 (15)	27 (9)
$\mathrm{C}(12)$	2871 (5)	1514 (4)	6990 (4)	98 (7)	53 (3)	71 (4)	15 (9)	64 (8)	7 (6)
C(13)	3803 (6)	695 (4)	6815 (4)	118 (7)	47 (3)	63 (3)	2 (8)	74 (7)	15 (6)
C(14)	4943 (6)	402 (5)	7577 (4)	156 (8)	69 (4)	68 (4)	32 (10)	85 (8)	23 (6)
C(15)	5774 (7)	-420 (5)	7516 (5)	170 (9)	78 (4)	101 (5)	6 (11)	90 (10)	23 (8)
C(16)	5429 (7)	-920 (4)	6682 (6)	188 (9)	48 (4)	148 (6)	44 (10)	158 (11)	47 (8)
C(17)	4308 (7)	-654 (5)	5903 (5)	240 (10)	63 (4)	110 (5)	-54 (11)	176 (10)	-54 (7)
C(18)	3446 (6)	186 (4)	5960 (4)	170 (9)	65 (4)	61 (3)	-53(10)	76 (8)	-17 (7)
C(19)	2252 (8)	499 (7)	5127 (5)	198 (12)	143 (7)	78 (5)	-46 (16)	46 (12)	-32 (10)

Table 3. Interatomic distances (\AA) and bond angles
$\left({ }^{\circ}\right)$ with their e.s.d.'s
The estimated standard deviations are in parentheses.

$\mathrm{S}-\mathrm{C}(1)$	1.796 (7)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(12)$	125.4 (5)
S-CC(3)	1.772 (5)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(12)$	120.7 (5)
$\mathrm{C}(3)-\mathrm{N}(1)$	1.392 (7)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	104.6 (5)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.462 (8)	$\mathrm{C}(2)-\mathrm{C}(1)-$	$105 \cdot 1$ (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.531 (10)		
		$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(4)$	121.2
$\mathrm{C}(3)-\mathrm{N}(2)$	$1 \cdot 250$ (7)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	119.4 (5)
$\mathrm{N}(2)-\mathrm{C}(4)$	1.430 (8)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(9)$	117.7 (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 382$ (9)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$122 \cdot 7$ (6)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 402$ (10)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.7 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.355 (12)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$120 \cdot 7$ (6)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.379 (12)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	121.5 (6)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 405$ (11)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 4$ (7)
$\mathrm{C}(4)-\mathrm{C}(9)$	$1 \cdot 389$ (9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.0 (8)
$\mathrm{C}(5)-\mathrm{C}(10)$	$1 \cdot 487$ (10)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.5 (8)
$\mathrm{C}(9)-\mathrm{C}(11)$	$1 \cdot 482$ (11)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	117.5 (6)
		$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$120 \cdot 9$ (7)
$\mathrm{N}(1)-\mathrm{C}(12)$	$1 \cdot 386$ (7)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(11)$	121.5 (6)
$\mathrm{C}(12)$-O	$1 \cdot 204$ (7)		
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 488$ (8)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{O}$	119.6 (5)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 383$ (8)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	118.2 (5)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 390$ (9)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}$	$122 \cdot 1$ (5)
$\mathrm{C}(15)-\mathrm{C}(19)$	$1 \cdot 350$ (10)		

Table 3 (cont.)

$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 377(10)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$117 \cdot 2(5)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 425(9)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$121 \cdot 1(5)$
$\mathrm{C}(13)-\mathrm{C}(18)$	$1 \cdot 383(8)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$121 \cdot 4(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 481(10)$	$\mathrm{C}(13)-\mathrm{C}(144)-\mathrm{C}(15)$	$121 \cdot 4(6)$
		$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$117 \cdot 4(6)$
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(3)$	$92 \cdot 6(3)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$123 \cdot 3(6)$
$\mathrm{S}-\mathrm{C}(3)-\mathrm{N}(1)$	$109 \cdot 4(4)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$119 \cdot 7(6)$
$\mathrm{S}-\mathrm{C}(3)-\mathrm{N}(2)$	$126 \cdot 3(4)$	$\mathrm{C}(177)-\mathrm{C}(18)-\mathrm{C}(13)$	$116.8(5)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{N}(2)$	$124 \cdot 2(5)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120 \cdot 9(6)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	$113 \cdot 5(5)$	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)$	$122 \cdot 3(6)$

Description and discussion of the structure

The structure determination of ATOME gave further proof of the conclusions (Tóth \& Toldy, 1972) drawn from mass spectra (Tóth, Tamás \& Toldy, 1971) and from the preliminary X-ray study of ATOCL (Argay, Kálmán, Tóth \& Toldy, 1972). The conformation of ATOME (Fig. 2) is similar to that of ATOCL, as is shown by the angles (Table 4) between planes in the molecules. The plane $P(4)$ of the phenyl ring (B) is almost perpendicular to the planes $P(1)$ and $P(2)$, in

Fig. 2. An $O R T E P$ stereo drawing of the title compound. The thermal ellipsoids are drawn at the 50% probability level.

Table 4. Equations of the atomic planes of the ATOME and ATOCL molecules and atomic deviations

$$
X, Y \text { and } Z \text { are in } \AA \text { and related to orthogonal axes } a, b, c .
$$

ATOME (P)

ATOCL (P^{\prime})
Plane $P(1)$ for $\mathrm{S}, \mathrm{N}(1), \mathrm{C}(1)$ and $\mathrm{C}(3)$ atoms: (Ring A)
$0.5165 X-0.5177 Y+0.6821 Z=5.3506 \quad 0.8$
Plane $P(2)$ for $\mathrm{S}, \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(3)$ and $\mathrm{C}(12)$ atoms
$0.5693 X-0.4772 Y+0.6694 Z=5.4973 \quad 0.9021 X+0.4289 Y+0.0486 Z=3.6377$
Plane $P(3)$ for $\mathrm{N}(1), \mathrm{C}(12), \mathrm{C}(13)$ and O atoms
$0.1073 X-0.1472 Y+0.9833 Z=9.3067 \quad 0.9434 X+0.3255 Y+0.0638 Z=3.6034$
Plane $P(4)$ for $\mathrm{C}(4) \rightarrow \mathrm{C}(9)$ atoms: (Ring B)
$0.0300 X+0.7616 Y+0.6474 Z=8.1110$ (Ring C)
Plane $P(5)$ for $\mathrm{C}(13) \rightarrow \mathrm{C}(18)$ atoms: (Ring C)
$0.7513 X+0.5650 Y-0.3412 Z=-1.9289 \quad-0.2949 X+0.0601 Y+0.9537 Z=0.1176$
Dihedral angles $\left({ }^{\circ}\right)$ formed by the least-squares planes given above

	ATOME	ATOCL	Δ		ATOME	ATOCL	Δ
$P(1) / P(2)$	$3 \cdot 9$	$6 \cdot 7$	$2 \cdot 8$	$P(2) / P(4)$	$85 \cdot 0$	$82 \cdot 9$	$2 \cdot 1$
$P(1) / P(3)$	$36 \cdot 7$	$13 \cdot 1$	$23 \cdot 6$	$P(2) / P(5)$	$86 \cdot 0$	$78 \cdot 8$	$8 \cdot 3$
$P(1) / P(4)$	$86 \cdot 4$	$88 \cdot 8$	$2 \cdot 4$	$P(3) / P(4)$	$58 \cdot 2$	$76 \cdot 6$	$18 \cdot 4$
$P(1) / P(5)$	$82 \cdot 1$	$77 \cdot 5$	$4 \cdot 6$	$P(3) / P(5)$	$70 \cdot 3$	$78 \cdot 6$	$8 \cdot 8$
$P(2) / P(3)$	$37 \cdot 9$	$6 \cdot 4$	$31 \cdot 4$	$P(4) / P(5)$	$76 \cdot 6$	$72 \cdot 5$	$4 \cdot 1$

agreement with the weak π-character of $\mathrm{N}(2)-\mathrm{C}(4)=$ $1 \cdot 430(8) \AA$. A similar arrangement (cf. dihedral angles $P^{\prime}(1) / P^{\prime}(4)$ and $P^{\prime}(2) / P^{\prime}(4)$ in Table 4) was also found in ATOCL. The O and $\mathrm{C}(13)$ atoms of the benzoyl moiety are turned considerably out of the plane $P(2)$ about $\mathrm{N}(1)-\mathrm{C}(12)$, which results in a weakened multiple bond (πp) character of this bond ($1.386 \AA$) compared with the corresponding one in ATOCL ($1.337 \AA$). In ATOCL the O and $\mathrm{C}(13)$ atoms of the benzoyl group lie almost in the plane $P^{\prime}(2)$.

The thiazolidine ring in ATOME has an almost perfect envelope shape. Only $\mathrm{C}(2)$ is significantly out ($\Delta=0.55 \AA$) of the plane $P(1)$. The envelope shape of the thiazolidine ring in ATOCL is somewhat more distorted [cf. planes $P(1)$ and $P^{\prime}(1)$ in Table 4]. However, the torsion angles $\mathrm{C}-\mathrm{S}-\mathrm{C}-\mathrm{C}$ are similar (24.9 and $23 \cdot 6^{\circ}$, respectively).

The bond distances and angles in the thiazolidine ring (A) can be discussed in terms of data obtained for thiazole rings (Form, Raper \& Downie, 1974). Additional results with the corresponding ones of ATOME and ATOCL, are given in Table 5. The thiazolidine rings (two molecules in the asymmetric unit) found in 2PI-3M-5PTO (Bally \& Mornon, 1973b), apart from $\mathrm{N}(1)-\mathrm{C}(2)$, show a strong resemblance to that in ATOME. In these structures there are strong localized $\mathrm{C}(3)-\mathrm{N}(2)$ exocyclic double bonds (mean $1 \cdot 260 \AA$) accompanied by low S-C(3)-N(1) angles (mean 110.1°) and long $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ bonds [mean $\mathrm{S}-\mathrm{C}(3)=1.767 \AA$]. A similar phenomenon can also be seen in the less accurate ATOCL structure.

Recently Kálmán (1973) pointed out that the atomic radii and electronegativities suggested by Truter (1962) for S in different valence states (II, IV and VI) can still be regarded as valid for the estimation of S-C singlebond lengths. On the basis of various sorts of $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ bonds (Table 6) Kálmán (1974) agreed that $1.77 \AA$, in accordance with Truter's suggestion, is the upper limit of the $\mathrm{S}^{11}-\mathrm{C}\left(s p^{2}\right)$ bond which could be formed only when the presence of strong multiple bonds \{as in ATOME, $2 \mathrm{PI}-3 \mathrm{M}-5 \mathrm{PTO}$ and sodium-[5-phenylthia-zolidine-2,4-dione] (Matthews, 1964)\} prevent the S-C bonds gaining any π-bond character. It might, of course, be somewhat longer if thermal correction is performed as in rhodan hydrate (Hordvik, 1970). S=C double bonds (expected value: $1.61 \AA$, $c f$. Abrahams, 1956) are generally polarized so that they can be described by a mean value of $1.69 \AA$ (Palenik, Rendle \& Carter, 1974); $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ single bonds, on the other hand, seek to gain a partial π-character and have a mean value of about $1.74 \AA$. This phenomenon suggests that one of the $\mathrm{S}^{11}-\mathrm{C}\left(s p^{2}\right)$ bonds $[1 \cdot 739(3) \AA]$ in 2-methylamino-benzothiazole (Fehlman, 1970) cannot be regarded as a single bond. The other is, however a true single bond of $1.763(3) \AA$.

The length of the $\mathrm{S}^{\mathrm{I}}-\mathrm{C}\left(s p^{3}\right)$ bond $[\mathrm{S}-\mathrm{C}(1)=1.796 \AA]$ in ATOME is the shortest among those given in Table 5, but agrees with the value given by Truter (1962). Comparison of the $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{3}\right)$ lengths (Table 5)

Table 5. A comparison of some thiazoline ring dimensions
Distances in \AA, angles in degrees. Further data can be obtained from Form, Raper \& Downie (1974).

Molecule	S-C(3)	S-C(1)	C(1)-C(2)	$\mathrm{C}(2)-\mathrm{N}(1)$	N(1)-C(3)	$\mathrm{C}(3)-\mathrm{N}(2)^{*}$	S-C(3)-N(1)
2A-5PTO I ${ }^{\text {a }}$	1.756 (12)	$1 \cdot 841$ (12)	$1 \cdot 535$ (16)	$1 \cdot 349$ (16)	$1 \cdot 336$ (16)	$1 \cdot 303$ (16)	$119 \cdot 0$ (2.5)
	1.771 (12)	$1 \cdot 839$ (12)	$1 \cdot 527$ (16)	$1 \cdot 357$ (16)	$1 \cdot 338$ (16)	1.301 (16)	$118 \cdot 1(2 \cdot 5)$
2A-5PTO 11 ${ }^{\text {a }}$	1.755	1.812	$1 \cdot 542$	$1 \cdot 357$	1.337	$1 \cdot 323$	118.0
	1.737	1.813	1.531	$1 \cdot 354$	$1 \cdot 342$	$1 \cdot 316$	118.9
2PMA-5PTO ${ }^{\text {b }}$	1.753 (8)	1.807 (8)	$1 \cdot 540$ (11)	$1 \cdot 354$ (11)	1.312 (10)	$1 \cdot 324$ (10)	$118 \cdot 6$ (1-3)
$2 \mathrm{PA}-5 \mathrm{PTO}^{\text {c }}$	1.748 (9)	1.813 (11)	1.531 (15)	$1 \cdot 392$ (13)	$1 \cdot 321$ (13)	$1 \cdot 334$ (13)	118.5 (1.5)
	1.753 (10)	1.826 (11)	1.549 (14)	1.364 (13)	1.316 (13)	$1 \cdot 344$ (13)	119.0 (1-5)
2PI-3M-5PTO ${ }^{\text {d }}$	1.764 (8)	1.808 (8)	$1 \cdot 537$ (11)	1.357 (10)	1.388 (10)	$1 \cdot 257$ (11)	$110 \cdot 1$ (1.0)
	1.764 (9)	$1 \cdot 814$ (8)	$1 \cdot 520$ (11)	$1 \cdot 368$ (11)	$1 \cdot 377$ (11)	$1 \cdot 273$ (11)	$110 \cdot 8(1 \cdot 2)$
ATOME ${ }^{\text {e }}$	1.772 (5)	1.796 (7)	1.531 (10)	1.462 (8)	$1 \cdot 392$ (7)	$1 \cdot 250$ (7)	$109 \cdot 4(0 \cdot 4)$
ATOCL^{f}	1.746 (10)	$1 \cdot 837$ (12)	$1 \cdot 530$ (18)	$1 \cdot 504$ (17)	$1 \cdot 437$ (14)	$1 \cdot 286$ (13)	$109 \cdot 8(0 \cdot 7)$

a. 2-Amino-5-phenylthiazolin-4-one (Mornon \& Raveau, 1971; Mornon \& Bally, 1972). b. 2-Phenylmethylamino-5-phenyl-thiazolin-4-one (Bally, 1973). c. 2-Phenylamino-5-phenylthiazolin-4-one (Bally \& Mornon, 1973a). d. 2-Phenylimino-3-methyl-5-phenylthiazolidin-4-one (Bally \& Mornon, 1973b). e. Present work. f. 2-(2,6-Dimethylphenyl)imino-3-(2-chlorobenzoyl)thiazolidine (Argay \& Kálmán, 1975).

Table 6. A comparison of $\mathrm{S}^{11}-\mathrm{C}\left(s p^{2}\right)$ multiple bonds (\AA)

Further data may be obtained from Form, Raper \& Downie (1974), Hordvik (1970), Johnson \& Paul (1970), Kruger \& Gafner (1972), Palenik, Rendle \& Carter (1974).
N-(3-Phenyl-2-benzo[b]thienyl)thiobenzamide ${ }^{a}$
2-Methylthio-5,5-diphenyl-2-imidazolin-4-one ${ }^{b}$
$\mathrm{S}^{11}-\mathrm{C}\left(s p^{2}\right)$
1.739 (3)
1.742 (3)
1.732 (5)

2-Methylthio-4,4-diphenyl-2-imidazolin-5-one ${ }^{b}$
1.740 (4)

6-6-Dimethyl-3-methylthio-6,7-dihydro-as-
triazino[1,6-c]quinazolin-5-ium-1-olate ${ }^{c} \quad 1.750$ (4)
1-Phenylthiosemicarbazide ${ }^{\text {d }}$
1.696 (2)

4-Phenylthiosemicarbazide ${ }^{e}$
$1 \cdot 685$ (5)
N-(3-Phenyl-2-benzo[b]thienyl)thiobenzamide ${ }^{f} \quad 1.643$ (3)
a. Argay \& Kálmán (1973). b. Lempert, Nyitrai, Zauer, Kálmán, Argay, Duisenberg \& Sohár (1973). c. Duisenberg, Kálmán, Doleschall \& Lempert (1975). d. Czugler, Kálmán \& Argay (1973). e. Kálmán, Argay \& Czugler (1972). f. Argay \& Kálmán (1973).
with those listed by Jones, Bernal, Frey \& Koetzle (1974) shows that $\mathrm{S}^{11}-\mathrm{C}\left(s p^{3}\right)$ single bonds, unlike $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ single bonds, are generally longer than the expected value of $1 \cdot 80-1 \cdot 81 \AA$. Jones et al. (1974) tried to find a correlation between S-C distances and C-S-S-C dihedral angles characteristic of the disulphides investigated. No convincing result could be obtained, however, presumably because of the different reliability of the experimental data.

Conclusion

$\mathrm{S}^{11}-\mathrm{C}\left(s p^{3}\right)$ and $\mathrm{S}^{11}-\mathrm{C}\left(s p^{2}\right)$ single bonds are influenced by various effects. $\mathrm{S}^{11}-\mathrm{C}\left(s p^{3}\right)$ bonds are mostly longer while $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ bonds are shorter than the expected values given by Truter (1962). ATOME displays the phenomenon of two $\mathrm{S}^{11}-$ C single bonds (1.772 and 1.796 \AA) in the same structure. Perhaps these remarks might help to improve the tentative bond-order/bond-length curve for $\mathrm{S}^{\mathrm{II}}-\mathrm{C}\left(s p^{2}\right)$ bonds suggested by Hordvik \& Sletten (1970).

The authors thank Drs L. Toldy and G. Tóth for the crystals and for their interest, and Professor I. Kristanovic (Belgrade) for the use of the diffractometer.

References

Abrahams, S. C. (1956). Quart. Rev. 10, 407-436.
Albano, V., Domenicano, A. \& Vaciago, A. (1966). Full- and Block-Diagonal Matrix Least-Squares Refinement Program for the IBM 7040 Computer (adapted to the Varian 73 computer by Argay, G.), Centro di Studio per la Strutturistica Chimica del C.N.R., Roma.
Argay, G. \& Kálmán, A. (1973). Cryst. Struct. Commun. 2, 19-22.
Argay, G. \& Kálmán, A. (1975). Acta Cryst. B31, 19611962.

Argay, G., Kálmán, A., Tóth, G. \& Toldy, L. (1972). Tetrahedron Lett. pp. 3179-3182.
Bally, R. (1973). Acta Cryst. B29, 2635-2637.
Bally, R. \& Mornon, J. P. (1973a). Acta Cryst. B29, 1157-1159.
Bally, R. \& Mornon, J. P. (1973b). Acta Cryst. B29, 11601162.

Cruckshank, D. W. J., Pilling, D. E., Bujosa, A., lovell, F. M. \& Truter, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman. Oxford: Pergamon Press.
Czugler, M., Kálmán, A. \& Argay, G. (1973). Cryst. Struct. Commun. 2, 655-658.
Duisenberg, A. J. M., Kálmín, A., Doleschall, G. \& Lempert, K. (1975). Cryst. Struct. Commun. 4, 295-298.
Fehlman, M. (1970). Acta Cryst. B26, 1736-1741.
Form, G. R., Raper, E. S. \& Downie, T. C. (1974). Acta Cryst. B30, 342-348.
Hordvik, A. (1970). Quart. Rep. Sulfur. Chem. 5, 21-43.
Hordik, A. \& Sletten, E. (1966). Acta Chem. Scand. 20, 1938-1942.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, P. L. \& Paul, I. C. (1970). J. Chem. Soc. (B), pp. 1296-1303.
Jones, D. D., Bernal, I., Frey, M. N. \& Koetzle, T. F. (1974). Acta Cryst. B30, 1220-1227.

Kálmán, A. (1973). Proc. Yugoslav Centre Cryst. (Zagreb), 8, 5-19.
Kálmán, A. (1974). Thesis for Degree of Doctor in Chemical Sciences. MTA, Budapest.
Kálmán, A., Argay, G. \& Czugler, M. (1972). Cryst. Struct. Commun. 1, 375-378.
Kruger, G. J. \& Gafner, G. (1972). Acta Cryst. B28, 272-283.
Lempert, K., Nyitrai, J., Zauer, K., Kálmán, A., Argay, G., Duisenberg, A. J. M. \& Sohár, P. (1973). Tetrahedron, 29, 3565-3569.

Matthews, B. W. (1964). Acta Cryst. 17, 1413-1420.
Mornon, J. P. \& Bally, R. (1972). Acta Cryst. B 28, 2074 2079.

Mornon, J. P. \& Raveau, B. (1971). Acta Cryst. B27, 95-108.
Palenik, G. J., Rendle, D. F. \& Carter, W. S. (1974). Acta Cryst. B30, 2390-2395.
Tóth, G., Tamás, J. \& Toldy, L. (1971). Magyar Kèm. Lapja, pp. 561-570.
Tóth, G. \& Toldy, L. (1972). Acta Chim. (Budapest), 77, 103-107.
Truter, M. R. (1962). J. Chem. Soc. pp. 3400-3406.

SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1973). B29, 154. Acta Cryst. (1975). B31, 1961

2-(2,6-Dimethyl-phenyl)imino-3-(2-chloro-benzoyl) thiazolidine

By Gy. Argay and A. Kálmán
Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1525-Budapest, POB 17, Hungary

(Received 3 March 1975; accepted 7 March 1975)

Abstract

C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OSCl}\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=$ 6.518(3), $b=13 \cdot 547(6), c=19 \cdot 314(8) \AA ; V=1705 \cdot 4 \AA^{3}$; $Z=4 ; D_{x}=1.335, D_{c}=1.323 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods and Fourier techniques. An R of 0.095 was obtained for 1207 observed reflexions after least-squares refinement.

Introduction. The structure of the title compound (hereinafter ATOCL) was determined in order to find out whether the o-chlorobenzoyl group is bound to the endocyclic $\mathrm{N}(1)$ (Fig. 1) or to the exocyclic $\mathrm{N}(2)$ of the 2-iminothiazoline moiety. A preliminary communication (Argay, Kálmán, Tóth \& Toldy, 1972) revealed

Fig. 1. Atomic numbering of the title compound. Unaccompanied numbers indicate carbon atoms. Rings are labelled A, B and C.
that the o-chlorobenzoyl group is linked to the endocyclic $N(1)$. This paper reports the complete structure analysis and gives the final atomic parameters.

The crystals are colourless. Cell constants were determined from Weissenberg and precession photographs with $\mathrm{Cu} K \bar{\alpha}(\bar{\lambda}=1.5418 \AA)$ radiation. The density was measured by flotation.
Intensities were collected on a Stoe semi-automatic two-circle diffractometer (for details see Kálmán, Simon, Schawartz \& Horváth, 1974). Because of the small size of the crystal 970 (out of 1750) independent reflexions had $I-1 \cdot 5 \sigma(I)<0$ and were taken as unobserved, with values of $I_{o}=\frac{1}{2} \sigma(I)$. The phase problem for 236 reflexions with $E>1.50$ was solved with MULTAN (Main, Woolfson \& Germain, 1971). The E map computed from the solution with the best ABSFOM $=1 \cdot 11$ revealed the positions of the Cl, S and a further six non-hydrogen atoms. Three cycles of structure-factor and Fourier calculations revealed the missing 15 non-hydrogen atoms ($R=0 \cdot 245$). Blockdiagonal refinement of the atomic coordinates with isotropic and anisotropic thermal parameters resulted in a final R of 0.112 for the observed reflexions. The anisotropic refinement was then continued with new experimental data (1358 independent reflexions of which only 143 were unobserved) collected from a larger crystal on the same instrument.
The H atoms were located geometrically by comparison with a related compound, 2-(2,6-dimethyl-phenyl)imino-3-(2-methylbenzoyl)thiazolidine (hereinafter ATOME), the structure of which has recently been solved (Argay, Kálmán, Nahlovski \& Ribár, 1975). The closing stage of the refinement, which was carried out for two separate groups of atoms (12 non-hydrogen

